Deformable Strain Sensors Based on Patterned MWCNTs/ Polydimethylsiloxane Composites
نویسندگان
چکیده
Patterned MWCNT/polydimethylsiloxane (PDMS) nanocomposite strain sensors were achieved by a microelectromechanical system assisted electrophoretic deposition (EPD) technique. With the combined effect of superior intrinsic piezoresistivity of the individual MWCNT and the tunneling effect of the MWCNT network, the stretchable composite demonstrates high sensitivity to the tensile strain. The gauge factor shows a strong dependence on both the initial resistance of the CNT/PDMS composite and the applied strain level. The mechanism is elucidated by analyzing the structure-propertyfunction of patterned CNT networks. When the entanglement of a MWCNT network allows effective load transfer, the sensitivity is primarily dominated by the intrinsic piezoresistivity of individual MWCNTs. Conversely, when the MWCNTs interpenetrate loosely, the tunneling effect prevails. The sensitivity of the device can be tailored by the proposed technique since MWCNT film thickness/density can be readily controlled by means of the patterning parameters of the EPD process. The work provides useful guidance for design and development of strain/stress sensors with targeted sensitivity for flexible electronics applications. VC 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1505–1512
منابع مشابه
Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers
This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comp...
متن کاملExperimental Investigation of the Piezoresistive Properties of Cement Composites with Hybrid Carbon Fibers and Nanotubes
Cement-based sensors with hybrid conductive fillers using both carbon fibers (CFs) and multi-walled carbon nanotubes (MWCNTs) were experimentally investigated in this study. The self-sensing capacities of cement-based composites with only CFs or MWCNTs were found based on preliminary tests. The results showed that the percolation thresholds of CFs and MWCNTs were 0.5-1.0 vol.% and 1.0 vol.%, re...
متن کاملFlexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite
This paper presents a novel method to fabricate temperature sensor arrays by dispensing a graphite-polydimethylsiloxane composite on flexible polyimide films. The fabricated temperature sensor array has 64 sensing cells in a 4×4 cm2 area. The sensor array can be used as humanoid artificial skin for sensation system of robots. Interdigitated copper electrodes were patterned on the flexible polyi...
متن کاملStretchable, Highly Durable Ternary Nanocomposite Strain Sensor for Structural Health Monitoring of Flexible Aircraft
Harmonious developments of electrical and mechanical performances are crucial for stretchable sensors in structural health monitoring (SHM) of flexible aircraft such as aerostats and morphing aircrafts. In this study, we prepared a highly durable ternary conductive nanocomposite made of polydimethylsiloxane (PDMS), carbon black (CB) and multi-walled carbon nanotubes (MWCNTs) to fabricate stretc...
متن کاملAn Experimental Study on Static and Dynamic Strain Sensitivity of Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures
The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix materials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete p...
متن کامل